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The problem of the games-theoretical encounter of similar linear objects under the condition
of minimax of the time T until coincidence of the specified phase vector coordinates and
under restrictions on the controlling force impulses [1 and 2] is considered. A computation-
al scheme modifying the extremal aiming rule for the case in question is justified.

1. Formulation of the problem, Let us consider the problem (3] of the minimax
of the time T until encounter of the pursuing (y{¢]) and pursued (z(¢]) motions described by
Egs.

d d
.E-'i’.-_—Ay + Bu, —£= Az 4 By (i.1)

where only the controls u and v are allowed. The realizations ult] and o[¢] of these controls
satisfy the integral restrictions

Wupnde<prn,  Sopnde<yin 1.2)

which are interpreted as restrictions on the impulses of the controlling forces. Here y, =
are the phase n-vectors of the objects; u, v are the r-vectors of the controls; the symbol
l g1l denotes the Euclidean norm of the vector q.The vectors in question are regarded as
vector columns; the superscript * denotes transposition, and the symbol [Q}[m] represents
the matrix of the first m rows of the matrix Q.

The pursuit goal is coincidence of the vectors {y[t]}[m] and iz[t]![ml » where m is a giv-
en number (m < n). The control u is formed by the feedback principle at each instant ¢ = T
on the basis of the realized values y[ ), (), u[-r]. and [ 7], i.e.

ultd =ulylsl, zlx, plal, v (1.3)

In order to distinguish the program controls u and v specified in advance in the form of
functions of the time ¢ from the realizations of the controls u and v constructed by the feed-
back principle in the form of the functions

u = ul”v Z; P': 'V], v = ”[lh z; "" 'V“ (1'4)
which, however, are realized in each specific case in the closed system as functions of the
time ¢. We shall denote the former by the symbols u(t) end v(s) and the latter by uf¢] and
vlt]. In general, the square brackets containing the arguments ¢ and 7 will indicate that we
are referring to the realizations of the processes in question. As our permissible controls u
and v we shall consider controls whose realizations uf.¢} and v{¢] can be represented as the
sum of a bounded integrable function and a linear combination of S~functions 8§z — ¢4).

Thus, we are required to find the control u (1.4) which ensures that
I° =min,sup, T  for {y[v+ Tpm=(2[v+ Tl},, (1.5)
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regardless of the initial conditions y['r] , a7l p.[T], vI7] from their prescribed range. The
control ¥ must be constructed in the form (1.4); the control v can be chosen either from among
functions (1.4) or from among the program controls v(t).

Note 1.1, The present problem is one of the theory of differential games. (see the
bibliography in survey [5]). Under restrictions (1.2) it has the distinctive feature of making
control realizations in the form of pulse §-functions expedient. This creates certain diffi-
culties in direct solution of the problem [2). In the case m =n = 2 the problem is solved in
great detail [1] with allowance for the difficulties just mentioned. We shall describe a modi-
fication of problem (1.1), (1.2), (1.5) for the general case n > m > 1 and propose a scheme
for its solution. This modification is similar to the pursuit problem for linear objects (1.1)
deacribed in [4], but is subject to the restrictions

feldi<p, lvldI<v (1.6)

The scheme which we shall propose enables us to circumvent certain of the difficulties
and to make use of the extremal aiming rule [4] in somewhat altered form. We note that we
are concemed here only with them i n i m a x of the time T until encounter. The problem
of the saddle point of the game where max min T = min max T will not be discussed here as
it is by the author of [1].

Under integral restrictions on u and v the distinction between the two problems is sig-
nificant. This is because under restrictions (1.6) investigation of the maximin of T often
presents no further difficulties, while in the case of integral restrictions on the controls u
and v the problem of the maximin of the time 7 until encounter often requires fresh and
specific investigation (e.g. see [6]).

2. Modification of the problem. The modification we are about to describe
is based on conversion to a discrete system followed by taking of a limit. A regularizing
scheme of this type, which is well suited for simulation on an electronic computer ,is des-
cribed in {2} for a particular case of problem (1.1), (1.2). We shall describe its construction
for the general case of problem (1.1), (1.2).

Let the pursuit process begin at the instant ¢ = ¢ ;, We introduce the sequence {Tkl k=0,
1,...) of instants ¢ = 7 (T = 85, Tf 41— T =A> 0) and assume that the choice of the con-
trol u¢] over the entire interval Ths 'r," ﬂ) is detemined by the realized values y[’rk], z['Tk],
u['r]‘]. v[Tk]' To the arguments which determine the function uls] for T Le< Tray Ve add
the variable U [7,] whose meaning will be made clear below. For the present we note that
vhen 7, > 7, the quantit 0[’7‘,‘] is determined on the basis of the values y['r,‘], ‘[Tk]'
g{‘r‘- ’ V[ka and ﬁ['rk;‘f; when 7j, = T, i.e. at the initial instant of pursuit, the quantity

Tol is determined on the basis oli the values y['ro], x['ro], u['ro ], v['rol.

Thus, let us assume that we have chosen some algorithm which determines the control u

from the rule
uftl=u (ylvl, z[%], pivd, vinl € (vl (e <t<t,) (2.1)

This algorithm, which includes a description of the method of computing functions (2.1)
for each sufficiently small A > 0, will be referred to for brevity as the “control law *°, or
still more briefly, as the ‘“‘control’’ u.

Let us denote by ¢t = 7 + T:‘.o the instant at which the inequality

I{y[t]_z[t]}[m]ﬂ<8 (e>0) (22)
is first fulfilled under the chosen control laws u and v.

Here 7 is some temporarily fixed instant ¢ = 7 2 ¢4. (Since the pulse controls u[¢] and
v[£)(v(s)) are generally permitted, the quantities y[t] and z[¢] in (2.2) should be interpreted
strictly, as the quantities y[t + 0] and 2[¢ + 0]. This remark should be borne in mind in simi-
lar cases below). The result of pursuit under the chosen control law (2.1) can be estimated
by means of the quantity

1, = sup_(lim sup (sup,T5, »)] (e>0) 2.3)
A0

Our task is to select a control u; [y, z, 1n, Vv, 9] (2.1) which minimizes the quantity ¥,
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for each possible state y[T], z[7], u[’r], UT), 7 2 T, of objects (1.1).
We must therefore find the optimal control

uft]l =uly, z, p, v, 0
which yields the minimum
1° =7, = min, 1, (2.4)

In other words, the optimal control law u® must have the following property: whatever the
number € > 0, there exists a number A=A o such that when A< Ao the control u = uto[y,
z, i, v,0] realized in the form (2.1) satisfies condition (1.2) and ensures the € -conver
gence (2.2) of the motions y[’r] and z[7] not later than at the instant

t<t+T°+¢

regardless of the permissible control vf¢] or v(e) which satisfies restriction (1.2).

There must not exist a control u = us which would ensure fulfillment of analogous condi-
tions for Te < T

Note 2.1, Introduction of the argument \')[Tk] determined from the values 1')[7"‘_1]
introduces a certain after effect into the control law, This is undesirable and can be exclu-
ded by discriminatin [2] the motion z{¢], i.e. by allowing the use of the realized values of
v[¢] or at least of v [t = 7] (> 0 is a small lag) in computing the control ul(] at each in-
stant ¢, This simplifies our problem considerably, but deprives it of the character of a po-
sitional game to a probably greater degree than does the above scheme including the quan-
tity 0[Tk]' Moreover, introduction of the quantity 9[7,] instead of v[¢] as an argument of
the control law u has the advantage that the quantity 'Tk] is computed from the instantan-
eous positional quantities y[¢], z[], p.[t] and v[4] stably, whereas determination of the con-
trolling force v[ﬁ from the changes in x[tf and v[¢] sometimes involves substantial errors.

3. Solution of the modified problem, We begin by considering two ancillary
problems of optimal program control.
Problem 1. Letus consider the controlled system

dz/dt = Az + Bw (3.1)

For given €3> 0, {2 0 and initial conditions T, x['r] we are to determine the optipal con-
trol w ;[d’( (¢) (¢ 27) which is restricted by the condition
o0

lwina <t (3.2)
and ensures the most rapid attainment by system (3.1) of the state
Iz (v + D}pa] e 3.3)

We shall denote the time-optimal operating period for Problem 1 by the symbo! T, [x[7],

Problem 2. Let the numbers 7> 0 and { > 0 be given. Under the given initial con-
ditions 7, x[7] we are to find the optimal control W] % (¢)° (¢ 2 T) which is restricted by
condition (3.2) and ensures the minimum

& = min]{z (¢ -+ )} | (3.9

Let us construct the control u® on the basis of the solutions of Problems 1 and 2. We as-
sume that the inequality I‘[To] ?-V[To] is fulfilled for 7 = T, and that when

z ] = y [%] — z [%,], L= Lt = plw] — v (7]
Problem 1 for € = 0 has the finite solution T = To['ro]' This condition will be considered
fulfilled in the discussion which follows, The solution of Problem 1 is known [7 to 9], The
optimal control w°(t) consists of a sequence of pulses and is given by
{
U8 pe xpen O = 2A(E—2,) 3.5)

8=l
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Let the interval [To, 7, ) contain the points t,,..., ¢ . We set ﬂ['ro] =Ty + T, ['ro] and
construct the function u[t] from Formula P

14
1
ut]l=ul[z[7], L], BIvll=—+ N @e<t<T) (3.6)
8=1
(If the interval [’To, T,) does not contain any point ¢;, we set ult] = 0 for ToSt<Ty.
An enalogous remark should be borne in mind in all similar situations to follow, although
this will not be noted for the sake of brevity.)
Now let us consider the instant ¢ = 7} > 7, and assume that the quantity ol k-I] is
known, If &= 0 and if under the conditions
T =1, zlt) =yl —zlul, {lul = plo] —v [w]
Problem 1 has the solution
Tolud <O [vp-1] — 1,
then, setting 'ﬁ[’Tk] =T+ Ty [Tk], we can take the corresponding solution
l(}.)

Weps, ce 0= 2 M08 (6 — 1) 3.7
=1
and use it to construct again the function u  in the form
o)
1 .
witl=ul(zlnd, Lnl, Ondl= 5 2087 <<, @3.8)
8=]1

Here p (k) denotes the number of points ts(k) from (3.7) which enter into the interval [’rk,

Tk+ ).

k Oln the other hand, if Problem 1 does not have a solution To[’Tk] < ﬁ[’r]‘_ll - Ty for
€ = 0 and for the given conditions 7 = Ty, x[Tk], C[’Tk], we must solve Problem 2 for the
given 7 =T, x[’rk], C[’rk] and T= O[7 .1 1- T

Let the solution of this problem be &%= 8°[‘7’k]. Having found the number EO[T,‘], we
solve Problem 1 for € = 80[7‘ 1. By our choice of &, Problem 1 hag the solution T 4 ['Tk]
< 15[7,,_1] —~ T} We now set 'ﬂk[Tk] =T + T, f7.]. The solution w:.[.,k]. 4818 (¢) of Prob-
lem 1 is again of the form (3.7), and the function ul¢] = u‘° is constructed from this solution
again in the form (3.8). This construction is fulfilled as long as 0[7’,‘_1] > T 1 ﬂ[’rk_l] <
L 7, at some instant Ty, then from that instant we always set 0[7—11:] = Ti; all the other
constructions which determine the function uf’ remain unchanged.

The resulting control ut° solves the problem posed in Section 2.

Let us give a brief justification of this statement. First, let 7= 7,. Choosing a control
v[d = u[t] u[2)/v (4] for each ult]l, we can verify that T°[’ro] is not smaller than T, ['To],
since system (3.1) would otherwise be brought by some control wie) = ule] — vle] satisfying
condition (8.2) from the given state x[TO] to the state {x (’7’0 + T} m)=0for Ts < To' Thus,
in order to prove the statement in the case 7 = 7, it is enough to verify that for each €> 0
chosen for sufficiently small values of A > 0, the constructed control 4° ensures E-conver-
gence (2.2) of the motions y[¢] and z[¢] by the instant ¢ < Ty + To[To] + € regardless of the
character of the permissible control v. Let us verify this.

First, we note from the construction of the function u‘° that the quantity c['rk] is always
nonnegative. Hence, construction of 1‘)[7,‘] and u. (7}, <t < Tg4,) is possible during the
entire time until the required convergence of y[¢] and zrﬂ (or over an infinite time if this
convergence does not take place). By construction, the values of ﬁ[Tk] do not increase un-

il {1 1> Tk 4y Hence, either the required € -convergence occurs for¢ S\‘}['rk] ST, +
+ To['r as required, or there arrives an instant 7, - when Eq. 7+ = ﬁ[’rk 4]} is fulfilled,
although the required €-convergence will not yet ﬂ‘ave occurred by this time.

Let us consider the second possibility. We can verify that for sufficient small values of
A, the quantities 8°[7‘k] (k < k”) which occur in the course of solution of ancillary Problem
2 will not exceed a number > 0 chosen in advence. In fact, 00[7‘0] = 0. On the other hand,
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the possible increase in the quantity e°['r,‘] - 80[7‘,‘ ﬂ] in a single interval can be esti-
mated as follows.

Let the control ve[t] operate over the interval T S¢<Tpyyp and let an impulse charac
terized by the guantities

k41 Tk
o == S v, [t] dt, Vg == S il’t I’]ﬂd‘
< *k

be generated over this interval.
If the control operating in the same interval were
o)
u (1= N AP s — () + v ]

a=1
then by virtue of the optimality of the control constituting the first term we would have the
inequality 8,0[7" ﬁ] s 8°[7‘h]. This is because optimal control (3.7) would then be opera-
ting in system (3.1), where x =y — z. Let us denote by xt{'rk 4.1] the value of the difference
y — z which would be realized under the controls us, ve. However, the interval {Tk' T ‘)
is in fact associated with a control uf of the form (3.8). The control uss{s] = uf’+ x5t ~
— Tk+1)s oPerating in system (1.1) with the control ve[t], would bring the system to the
state xeel7g 4] =y — 2z, which differs from x‘['r’,‘ ﬂ] by an amount on the order of

P(’j-) ]
(e + D I%Mp A
§==
Here the symhol 8 *(¢) denotes the ‘‘left-hand’’ & -function which generates the impulse
at the point t = — 0, From this we infer that the quantity 3"0[71‘4»1 which would result in
this case satisfies the inequality
pl)
te” [0, ot (1,1 +28 (ke + 3 IAM ) (h=const)
=1
But the significance of the quantity £°[7; ﬂ] which arises in reality implies that
e°[7, 4 1 < €0s%l7;4,). Thus, we obtain the estimate

p&)
b= [ty — e [, ] <M (1, + 3] 12,801) (39)
F 3 §
which in turn implies the estimate
k
e[ ) < D B SM %)+ v wh) =1 (3.10)

4=0

From (3.10) we infer, in turn, that if the required convergence_of the motions y and z has
not occurred by the instant ¢ = 7; # when for the first time ‘[Tk'] = Ty, then in any case
the accessibility domain (see [2ﬁ Gz['r,‘ . . x[’rk']] of the motion z1¢] lies in the n-
neighborhood of the accessibility domain G177, T4, ¥ {Tk 1} of the motion y [].

By virtue of the arbitrary smallness of the quantity 7 (3.10) we conclude from this that
for sufficiently small A the required €-convergence of the motions y [t] and ¢} occurs not
later than 2v "ro]/-e steps after the instant 7 = 7 », This completes our verification of
the optimality of the control u,° constructed for the chosen initial data 7 = To and x[TO].

Optimality of the control u,” which ensures minimax €-convergence of the motions y[t]
and z[4] (in the sense of (2.3) and (2.4)) when the quantity y,°= T[74] is measured from
an arbitrary instant and when the realizations y le, z[Tk], p['Tk] . v("rk] are arbitrary can
be proved in the same way. This is because the foregoing statements imply that for suffi-
ciently small values of A> 0 tLe quantity 8[Tk ], which determines the entire subsequent
course of pursuit, is sufficiently small.

This way we can prove the following statement, Let us be given an arbitrarily small nume
ber & > 0. We can then choose an arbitrarily small Aj (A <A ) such that the following con-
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dition is fulfilled for the realization corresponding to the discrete control scheme: if 7 =
= T 2 To is some instant of the control process and if {7, ] = y['rk] - z[‘rk], di] =
=f Tk] - V[Tk] are the quentities realized at this instant, t’ixen the control u,° operating
for ¢ 2 7 for any permissible control v ensures €-convergence of the motions y [¢] and
2[¢] not later than at the instant ¢ < ﬁ[Tk] +e<T + T ’rk] + £, At the same time,
there is no way of choosing the control us which, beginning to operate at the instant ¢t = 7
for any £ > 0 and for any permissible control v would ensure e-convergence (2.1) of the
motions y and z (1.1) at the instant t < 7; + Te + €, where To < T This implies the op-

timality of the constructed control u in the sense of conditions (2.2) and (2.3).
Note 3.1. The construction o[

the control u © described above is based on the solu-
tions of Problems 1 and 2 which must be found for each 7 = 7 in the course of the pursuit
process. Methods of constructing these solutions are known from the general theory of lin-
ear object control. We shall cite them here for completeness, interpreting the problems in
question [10] as moment problems. Let 3(¢) be the solution of Eq.
dsfdt = — A*s (3.11)
The realizability condition for the transfer of system (3.1) from the given state x['r] to
to the state {x (7 + T)]!gm] | '![m] under restriction (3.2) if the problem is interpreted as
a moment problem [11], is
«+T
{or (D) = S {X [T 47— t] Bo (1), dt (3.12)
h1
where X (¢) is the fundamental matrix of solutions of system (3.1) (foru=0) and ¢ plz) =1 —
X (T) x[7] can be written as
Er (!, z)“‘CP_T <o (3.13)
for all L,
Here
Er(l )=l (s),  pg()=max,|s* (&) B (3.14)
where I is the vector of the boundary conditions { = s (T = T) of the solution s(t) = X[T +
+T ~ el of Eq. (3.11), where {; =0fori=m+ 1,..,n, Hence, the solution T° of Problem
1 for € =0 is defined as the smallest number T > 0 which satisfies condition (3.13) for
2 = 0. Considering the coordinates x; (i = 1,..., m) as controlled, i.e. that p(I)> 0 for [ # 0,
then condition (3.13) can be written as

B°=E(l°, 0)=max; E({, 0) ¢ for p(/)=1 (3.15)
The optimal control w °(¢) itself can be determined from the maximum condition
=T T
#£°% (8) Bu® () dt == max,, for S Lw (1) dt < E° (3.16)
< T

where s °[7 + T] = ° is the solution of problem (3.15). For &> 0 the solution of Problems
1 and 2 follows from the conditions of separation of the accessibility domain of process
(3.1) and the sphere[H z}[ < & by the instantt =7 + T (e.g. see [12 and 13]). At the same
time, as is noted in [10], the solutions of Problems 1 and 2 also follow directly from rela-
tion (3.13).

To show this it is sufficient, for example, to write (3.13) in the form maxl[f «, z) -
-{p T(l)] <0 for | ]| < 1. The condition of entry into the & -sphere ||z} < & la[es the form
min zma"l[‘fT(l ,3)={p 7(1)]$ 0 for ||I]| £ 1 and [|z]] < €. By virtue of the permutability
of the operations min and max in this case, and with allowance for the expressions for £
and ¢ g, we obtain from this the condition

max, [(*X (T) = {v] — {pp () —€] <O for I]=1
which determines the solution of Problems 1 and 2 (the smallest T > O for the given & and
conversely, the smallest € > O for a given T), The optimal controls w (t) themselves are
again determined from maximum conditions similar to (3.16).
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Note 3.2, The example
01 ) ('0 ) ( 0 )
= = , = i, To] =
A (_1 o) B=y { (%) z[n] =\,
indicates that without introduction of the artifically fixed quantity 0{7;] similar construc-

tion of the control u, based only on the solution of ancillary Problem 1, i.e. on the choice
of \'}[‘Tk] =T + T, 'r,‘] involves difficulties due to the possible loss of the given unsta-

ble root 0[1’,‘].

Note 3.3. Similar construction of a scheme for regularizing the optimal control u®
can also be effected (with appropriate alterations) for the problem of the minimax of the time
T ) until the £%encounter “ly e} - 2(4] ‘[m] | £ €° of the motions y[t] and 2[¢} (or
given €°). Quite naturally, it can also be effected for the more regular problem of the mini-
max of the quantity [|{y (§) — 2 (§) l[m] | at the given fixed instant ¢t = { of termination of
the process. Finally, the system can be adapted without significant alterations for the case
where restrictions (1.2) involve not a Euclidean, but some other norm of the vectors u and v.
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